

THE ENVIRO ENGINEER SCIENCE, ENGINEERING & TECHNOLOGY CALCULATION SHEET

Universal beam with fixed supports and a distributed load Dimensions and properties of structural steel EN 1993-1-1 Universal Beam:

Sizes based on British Steel Section 203 x 102 x 23 UB BS EN 10365:2017 Depth of UB section:

Width of UB section:

Flange thickness:

Web thickness:

Root radius:

Depth between flanges:

Mass of section per metre:

Density of steel:

Poisson's ratio in elastic range:

v := 0.30

Young's modulus of elasticity:

Ultimate tensile strength of hot rolled steel:

Yield strength of hot rolled steel:

E := 210 GPa

 $\rho := 7850 \text{ kg m}$

D := 203.2 mm

B := 101.8 mm

T := 9.3 mm

t := 5.4 mm

r := 7.6 mm

d := 184.6 mm

mass := 23.1 kg m

UTS := 400 MPa

 $\sigma_{_{\hspace{-.1em} \textit{y}}} := 250 \text{ MPa}$

Calculations for beam loading with uniform distributed load

Length of beam:

Distance to first support along beam:

Distance to second support along beam:

L := 2.0 m

 $L_A := 0.0 \text{ m}$

 $L_B := 2.0 \text{ m}$

Uniform load, distance from support & load length:

 $F := \begin{bmatrix} 10.7 & \text{kN m} \\ 0.5 & \text{m} \\ 1.0 & \text{m} \end{bmatrix}$

Factor of Safety for bending stress:

Horizontal distance from reaction point under investigation:

x := 0.75 m

FOS := 5

Total weight of the beam:

 $w := mass \cdot L g_e = 0.4531 \text{ kN}$

Cross sectional area of UB section:

$$A := \left[(2 \cdot r)^2 - \left[\frac{\pi \cdot (2 \cdot r)^2}{4} \right] + 2 \cdot (B \cdot T) + (d \cdot t) = 2939.9 \text{ mm}^2 \right]$$

Second moment of area on x-x axis:

$$I_{xx} := \left(\frac{t \cdot d^3}{12}\right) + \left(\frac{B}{12}\right) \cdot \left(D^3 - d^3\right) = 2064.18 \text{ cm}^4$$

Maximum allowable bending stress:

$$\sigma_a := \frac{\sigma_y}{FOS} = 50 \text{ MPa}$$

Stress loading on supports

Uniform load per unit length of beam:

Distance of distributed load "W" from support "A":

Total length of distributed load:

Distance of distributed load "W" from support "B":

Distributed load on beam:

Left support reaction force:

Right support reaction force:

Total reaction forces on beam:

Distance to point load from neutral axis:

Section modulus on x-x axis:

Normal stress on the beam:

Bending moment at position "x" on beam:

Maximum bending moment of beam:

Maximum bending stress on the beam:

Strain on the beam:

$$W = 10.7 \text{ kN m}^{-1}$$

a = 0.50 m

b = 1.00 m

c = 0.50 m

 $Dist := W \cdot b = 10.7 \text{ kN}$

$$R1 := -\left(\frac{W \cdot b}{2 \cdot L} \cdot (2 \cdot c + b)\right) = -5.35 \text{ kN}$$

$$R2 := -\left(\frac{\mathbf{W} \cdot \mathbf{b}}{2 \cdot L} \cdot (2 \cdot a + b)\right) = -5.35 \text{ kN}$$

$$R := R1 + R2 = -10.7 \text{ kN}$$

$$y := \frac{D}{2} = 101.6 \text{ mm}$$

$$Z_{xx} := \frac{2 \cdot I_{xx}}{(d+2 \cdot T)} = 203.1676 \text{ cm}^3$$

$$\sigma := \frac{W \cdot L}{2 \cdot Z_{xx} \cdot L} \cdot X \cdot (L - X) = 24.6871 \text{ MPa}$$

$$M_x := \frac{W \cdot x}{2} \cdot (L - x) = 5.0156 \text{ kN m}$$

$$M_{\text{max}} := \frac{\overline{W} \cdot L^2}{8} = 5.35 \text{ kN m}$$

$$\sigma_{\text{max}} := \frac{y \cdot W \cdot L^2}{\left(8 \cdot I_{\text{xx}}\right)} = 26.3329 \text{ MPa}$$

$$\varepsilon := \frac{\sigma_{\max}}{F_{\epsilon}} = 0.000125$$

if
$$x = \frac{L}{2}$$

$$\delta_{max} := \frac{5 \cdot W \cdot L}{384 \cdot E \cdot I_{xx}}$$
else
$$\delta_{max} := \frac{W \cdot x}{24 \cdot E \cdot I_{xx}} \cdot \left(L^3 - 2 \cdot L \cdot x^2 + x^3\right)$$

If-else statements to select correct equation for the Maximum deflection of the beam depending on value of ${\bf x}$

Maximum deflection of beam:

 $\delta_{\max} = 0.47608 \; \mathrm{mm}$

Maximum extention of beam:

 $\Delta L := \varepsilon \cdot L = 0.2508 \text{ mm}$

Diagram showing longitudinal section of beam

UB supported at both ends
and a distributed load
applied to beam

result = "Beam unlikely to be permanently deformed"

Additional properties of steel beam not included in calculations above

Second moment of area on y-y axis:

$$I_{yy} := \frac{t^3 \cdot d}{12} + 2 \cdot \left(\frac{B^3 \cdot T}{12}\right) = 163.76 \text{ cm}^4$$

Radius of gyration on x-x axis:

$$i_{xx} := \left(\frac{I_{xx}}{A}\right)^{0.5} = 8.3793 \text{ cm}$$

Radius of gyration on y-y axis:

$$i_{yy} := \left(\frac{I_{yy}}{A}\right)^{0.5} = 2.3602 \text{ cm}$$

Section modulus on y-y axis:

$$Z_{yy} := \frac{2 \cdot I_{yy}}{B} = 32.1736 \text{ cm}^3$$

Shear modulus:

$$G := \frac{E}{(2 \cdot (1 + v))} = 80769.2308 \text{ MPa}$$

Breaking stress at the extreme fibre in tension:

$$\sigma_{\text{max}} := \frac{M_{\text{max}}}{Z_{\text{xx}}} = 26.3329 \text{ MPa}$$

Proof stress, length of plastic deformation of beam before it is permanently deformed:

$$\sigma_p := L \cdot 0.2 \% = 4 \text{ mm}$$