

THE ENVIRO ENGINEER SCIENCE, ENGINEERING & TECHNOLOGY CALCULATION SHEET

Universal beam with fixed supports and single point load

Dimensions and properties of structural steel EN 1993-1-1 Universal Beam:

Sizes based on British Steel Section 203 x 102 x 23 UB BS EN 10365:2017

Young's modulus of elasticity:

Depth of UB section:

Width of UB section:

Flange thickness:

Web thickness:

Root radius:

Depth between flanges:

Mass of section per metre:

Density of steel:

Poisson's ratio in elastic range:

Ultimate tensile strength of hot rolled steel:

Yield strength of hot rolled steel:

E := 210 GPa

v := 0.30

D := 203.2 mm

B := 101.8 mm

T := 9.3 mm

t := 5.4 mm

r := 7.6 mm

d := 184.6 mm

 $mass := 23.1 \text{ kg m}^{-1}$

 $\rho := 7850 \text{ kg m}^{-1}$

UTS := 400 MPa $\sigma_{_{_{m{V}}}} := 250 \text{ MPa}$

Calculations for beam loading with two supports and point load

Length of beam: L := 2.0 m

Distance to first support along beam: $L_{a} := 0.0 \text{ m}$

Distance to second support along beam: $L_{\rm R} \coloneqq 2.0 \, {\rm m}$

Point load and distance along beam: $F := \begin{bmatrix} 10.7 \text{ kN} \\ 1.0 \text{ m} \end{bmatrix}$

Factor of Safety for bending stress:

FOS := 5

Total weight of the beam: $W := mass \cdot L g_e = 0.4531 \text{ kN}$

Cross sectional area of UB section: $A := \left[\left(2 \cdot r \right)^2 - \left(\frac{\pi \cdot \left(2 \cdot r \right)^2}{4} \right) \right] + 2 \cdot \left(B \cdot T \right) + \left(d \cdot t \right) = 2939.9 \text{ mm}^2$

Second moment of area on x-x axis: $I_{xx} := \left(\frac{t \cdot d^3}{12}\right) + \left(\frac{B}{12}\right) \cdot \left(D^3 - d^3\right) = 2064.18 \text{ cm}^4$

Maximum allowable bending stress: $\sigma_a := \frac{\sigma_y}{FOS} = 50 \text{ MPa}$

Stress loading on supports

Point load on beam:

Distances of point load from support "A" and "B":

Left support reaction force:

Right support reaction force:

Total reaction forces on beam:

Distance to point load from neutral axis:

Normal stress on the beam:

Maximum bending moment of beam at point load:

Maximum bending stress on the beam:

Strain on the beam:

Maximum deflection of beam:

Maximum extension of beam:

$F_{max} = 10.7 \text{ kN}$

$$a = 1.00 \text{ m}$$
 $b := L - a = 1.00 \text{ m}$

$$R1 := \left(-\frac{L_B - a_A}{L_B - L_A}\right) \cdot F_{max} = -5.35 \text{ kN}$$

$$R2 := -R1 - F_{max} = -5.35 \text{ kN}$$

$$R1 + R2 = -10.7 \text{ kN}$$

$$Y := \frac{D}{2} = 101.6 \text{ mm}$$

$$\sigma := \frac{F_{max}}{A} = 3.6396 \text{ MPa}$$

$$M_{\text{max}} := \frac{F_{\text{max}} \cdot a \cdot b}{T_{\text{max}}} = 5.35 \text{ kN m}$$

$$\sigma_b := \frac{y \cdot F_{\text{max}} \cdot a \cdot b}{\left(L \cdot I_{\text{xx}}\right)} = 26.3329 \text{ MPa}$$

$$\varepsilon := \frac{\sigma_b}{E} = 0.000125$$

$$\delta_{\max} \coloneqq \frac{F_{\max} \cdot L^{3}}{48 \cdot E \cdot I_{\max}} = 0.4114 \text{ mm}$$

$$\Delta L := \varepsilon \cdot L = 0.2508 \text{ mm}$$

Diagram showing longitudinal section of beam

UB supported at both ends load F1 applied to beam

result = "Beam unlikely to be permanently deformed"

Additional properties of steel beam not included in calculations above

Second moment of area on y-y axis:

$$I_{yy} := \frac{t^3 \cdot d}{12} + 2 \cdot \left(\frac{B^3 \cdot T}{12}\right) = 163.76 \text{ cm}^4$$

Radius of gyration on x-x axis:

$$i_{xx} := \left(\frac{I_{xx}}{A}\right)^{0.5} = 8.3793 \text{ cm}$$

Radius of gyration on y-y axis:

$$i_{yy} := \left(\frac{I_{yy}}{A}\right)^{0.5} = 2.3602 \text{ cm}$$

Section modulus on x-x axis:

$$Z_{xx} := \frac{2 \cdot I_{xx}}{(d+2 \cdot T)} = 203.1676 \text{ cm}^3$$

Section modulus on y-y axis:

$$Z_{yy} := \frac{2 \cdot I_{yy}}{B} = 32.1736 \text{ cm}^3$$

Shear modulus:

$$G := \frac{E}{(2 \cdot (1 + v))} = 80769.2308 \text{ MPa}$$

Breaking stress at the extreme fibre in tension:

$$\sigma_{\text{max}} := \frac{M_{\text{max}}}{Z_{\text{xx}}} = 26.3329 \text{ MPa}$$