Dimensions and properties of structural steel EN 1993-1-1 Circular Hollow Section:

Sizes based on Steel Construction Insitute Section 219.1 x 8.0 CHS BS EN 10219-2:2006 Outside Diameter of CHS: D := 219.1 mm

Thickness of section: t := 8.0 mm

Mass of section per metre: mass := 41.6 kg m

Density of steel: $\rho := 7850 \text{ kg m}^{-1}$

Poisson's ratio in elastic range: v = 0.30

Young's modulus of elasticity: E := 210 GPa

Ultimate tensile strength of cold formed steel:

UTS := 420 MPa

Yield strength of cold formed steel: $\sigma_y \coloneqq 355 \text{ MPa}$

Calculations for beam loading with two supports and point load

Length of CHS beam: L := 2.0 m

Distance to first support along beam: $L_{\rm A} \coloneqq 0.0 \; {\rm m}$

Distance to second support along beam: $L_{\rm R} \coloneqq 2.0 \, {\rm m}$

Point load and distance along beam: $F := \begin{bmatrix} 10.7 \text{ kN} \\ 1.0 \text{ m} \end{bmatrix}$

Factor of Safety for bending stress: FOS := 5

Inside diameter of CHS: $d := D - (2 \cdot t) = 203.1 \text{ mm}$

Total weight of the CHS beam: $W := mass \cdot L g_e = 0.8159 \text{ kN}$

Cross sectional area of CHS section: $A := \left(\frac{\mathbf{m} \cdot D^2}{4}\right) - \left(\frac{\mathbf{m} \cdot d^2}{4}\right) = 53.0552 \text{ cm}^2$

Second moment of area: $I := \frac{\pi \cdot \left(D^4 - d^4\right)}{64} = 2959.6329 \text{ cm}^4$

Maximum allowable bending stress: $\sigma_a := \frac{\sigma_y}{FOS} = 71 \text{ MPa}$

Stress loading on supports

Maximum point load on beam:

Distances of point load from support "A" and "B":

Left support reaction force:

Right support reaction force:

Total reaction forces on beam:

Distance to point load from neutral axis:

Normal stress on the beam:

Maximum bending moment of beam at point load:

Maximum bending stress on the beam:

Stain on the beam:

Maximum deflection of beam:

Maximum extension of beam:

$$F_{max} = 10.7 \text{ kN}$$

$$a = 1.00 \text{ m}$$
 $b := L - a = 1.00 \text{ m}$

$$R1 := \left(-\frac{L_B - a}{L_B - L_A}\right) \cdot F_{max} = -5.35 \text{ kN}$$

$$R2 := -R1 - F_{max} = -5.35 \text{ kN}$$

$$R1 + R2 = -10.7 \text{ kN}$$

$$y := \frac{D}{2} = 109.55 \text{ mm}$$

$$\sigma := \frac{F_{max}}{A} = 2.0168 \text{ MPa}$$

$$M_{\text{max}} := \frac{F_{\text{max}} \cdot a \cdot b}{T_{\text{c}}} = 5.35 \text{ kN m}$$

$$\sigma_{\text{max}} := \frac{y \cdot F_{\text{max}} \cdot a \cdot b}{(L \cdot I)} = 19.8029 \text{ MPa}$$

$$\varepsilon := \frac{\sigma_{\max}}{E} = 9.429942 \cdot 10^{\,-5}$$

$$\delta_{\max} := \frac{F_{\max} \cdot L^3}{48 \cdot E \cdot I} = 0.2869 \text{ mm}$$

$$\Delta L := \varepsilon \cdot L = 0.1886 \text{ mm}$$

Diagram showing longitudinal section of beam

CHS supported at both ends load F1 applied to beam

result = "CHS unlikely to be permanently deformed"

Additional properties of steel CHS not included in calculations above

Radius of gyration:

$$i := \left(\frac{I}{A}\right)^{0.5} = 7.4689 \text{ cm}$$

Section modulus:

$$Z := \frac{\pi \cdot \left(D^4 - d^4\right)}{32 \cdot D} = 270.1627 \text{ cm}^3$$

Shear modulus:

$$G := \frac{E}{(2 \cdot (1 + v))} = 80769.2308 \text{ MPa}$$

Breaking stress at the extreme fibre in tension:

$$\sigma_b := \frac{M_{\text{max}}}{Z} = 19.8029 \text{ MPa}$$

Proof stress, length of plastic deformation of beam before it is permanently deformed:

$$\sigma_p := L \cdot 0.2 \% = 4 \text{ mm}$$

CHS supported at both ends load F1 applied to beam